
The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

Availability Analysis and Improvement of 
Software Rejuvenation Using Virtualization   

 
Thandar THEIN  

Sung-Do CHI 
Jong Sou PARK 

{thandar, sdchi, jspark}@kau.ac.kr 
Computer Engineering Department  

Korea Aerospace University, Seoul, Korea 

 
Abstract. Availability of business-critical application servers is an issue of 
paramount importance that has received special attention from the industry and 
academia. To improve the availability of application servers, we have conducted a 
study of virtualization technology and software rejuvenation that follows a 
proactive fault-tolerant approach to counter act the software aging problem. We 
present Markov models for analyzing availability in such continuously running 
applications and express availability, downtime and downtime costs during 
rejuvenation in terms of the parameters in the models. Our results show that our 
approach is a practical way to ensure uninterrupted availability and optimize 
performance for even strongly aging applications. 
 
Keywords: Software aging, Software rejuvenation, Virtualization, Availability, 
Markov process 

 
 
1. Introduction 
 
As business becomes increasingly dependent on information and computing technology, 
continuous availability is a universal concern. It has now been well-established that failures of 
computer systems are more often due to software faults than due to hardware faults [6, 11]. 
Recently, the wide-spread phenomenon of “software aging”, one in which the state of a 
software system gradually degrades with time and eventually leads to performance 
degradation, transient failures or even crushes of applications, has been reported [7]. The 
primary causes of this degradation are the exhaustion of operating system resources, data 
corruption and numerical error accumulation. Some common examples of software aging are 
memory bloating and leaking, unreleased file-lock, data corruption, storage space 
fragmentation and accumulation of round-off errors [13]. Aging has not only been observed in 
software used on a mass scale but also in specialized software used in high-availability and 
safety critical applications. The most natural procedure to counteract such software aging is to 
apply the well-known technique of software rejuvenation. Virtualization techniques are getting 
more and more popular. They allow to run multiple virtual servers on a single physical 
machine. Introduced in the 1960s, virtualization has lately enjoyed a great surge of interest. 
The improved efficiency flexibility, and cost savings that virtualization of storage, networking, 
and computing resources enables in data centers have been the key drivers of this interest. The 
idea proposed framework in this paper is to exploit the advantage of virtualization technology 
to improve the software rejuvenation for addressing the software aging problem. The structure 
of this paper is as follows. In section 1 we address the problem issue. In section 2, we 
introduce the concepts of software rejuvenation and virtualization technology and address 
related research. Section 3 presents the proposed framework. Section 4 presents the models in 
which the operational states of the system in virtualized and non-virtualized scenario are 
described and in the following section, the model is analyzed and experimental results are 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

given to validate the model solution. Finally, we conclude that virtualization can be helpful for 
software rejuvenation and fail-over in the occurrence of application failures and software 
aging. 
 
2. Software Rejuvenation and Virtualization 
 
In this section, we introduce the concepts of software rejuvenation and virtualization 
technology.  
 
2.1 Software Rejuvenation  
Software rejuvenation is a proactive fault management technique aimed at cleaning up the 
system’s internal state to prevent occurrence of more severe crash failure in the future [10]. It 
involves occasionally stopping the software application, cleaning its internal state and/or its 
environment, and then restarting it [8]. By removing the accrued error conditions and freeing 
up or decrementing operating system (OS) resources, this technique proactively prevents 
unexpected future system outages. Unlike downtime caused by sudden failure occurrences, the 
downtime related to software rejuvenation can be scheduled at the discretion of the 
user/administrator. According to the control mechanism, software rejuvenation can be 
categorized into two approaches, open-loop control and closed-loop control [10]. Open-loop 
approach is characterized by no feedback information from the system after the integration of 
software rejuvenation functionality. Time-based rejuvenation and its variants fall into this 
category. On the other hand, in closed-loop approach, rejuvenation trigger is dependent on 
some form of feedback from the system. The rejuvenation decision is made based on current 
system state and/or previous system behavior, which include workload, resource usage [5] and 
failure logs. Measurement-based rejuvenation belongs to this category [14]. Meanwhile, 
rejuvenation has been implemented in various types of systems, telecommunication system [1], 
transaction processing systems [3], cluster servers [4], and spacecraft systems [12]. Many 
research papers on this topic can be found at [10]. It is widely understood that this technique of 
rejuvenation provides better results, resulting in higher availability and lower costs. 
 
2.2 Virtualization  
Virtualization is a proven software technology that is rapidly transforming the IT landscape 
and fundamentally changing the way that people compute. Virtualization technology, which 
allows multiple operating systems to run different applications on a single computer, has 
caught the attention of IT managers for its promise to let them better manage and utilize 
corporate IT resources.  
 
Virtualization allows abstracting away the real hardware configuration of a system. One 
method of virtualizing the hardware resources of a computer involves using a layer of 
software, called the Virtual Machine Monitor (VMM), to provide the illusion of real hardware 
for multiple virtual machines (VMs). Inside each VM, the operating system (often called the 
guest OS) and applications run on the VM’s own virtual resources such as virtual CPU, virtual 
network card, virtual RAM, and virtual disks [9]. VMs possess four key characteristics that 
benefit the user: compatibility, isolation, encapsulation and hardware independence [15]. A 
VMM can be hosted directly on the computer hardware (e.g., Xen [2] or within a host 
operating system (e.g., VMware).VMs offer a degree of flexibility that is not possible to obtain 
on physical machines. That is mainly because VM state, much like files, can be read, copied, 
modified, saved, migrated, and restored. As server consolidation using VMs is widely carried 
out. Recently, multiple server machines are consolidated into one machine using VMs. In such 
a machine, many VMs are running on top of virtualization middleware. 
3. Proposed Rejuvenation Framework using Virtualization 
 
We make the following contributions in our proposed framework. First we present new way of 
using virtualization to improve software rejuvenation for addressing the software aging issue. 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

With our proposed framework, it can be able to optimize the rejuvenation operation without 
requiring any additional hardware. This new approach is meant to be the less disruptive as 
possible for the running service and to get a zero downtime for most of the cases. Our 
framework of software rejuvenation is totally supported by software and can be easily 
deployed in existing IT infrastructures. Virtualization technology and software rejuvenation 
can be used to prolong the availability of the services. 

 

 
 

Figure 1. Proposed system flow 
 
Our proposed rejuvenation framework using virtualization is shown in figure 1 and 2. In order 
to achieve optimize planned restarts in a single-server configuration; we adopt the 
virtualization technology in our proposed framework. On top of virtualization middleware 
layer, there are (n+1) virtual machines per application server shown in figure 2. A software 
load-balancer (VLM-LB) will be run on VM0. The main application server will be run on one 
VM. The rest of VMs will work as hot-standby servers, where we instantiate a replica of the 
application server. In hot-standby configuration, component state is replicated to the standby 
on any change, i.e. the standby component is always up-to-date. In case of a failure, the 
standby component replaces the failed component and continues to operate based on the 
current state. The hot-standby configuration offers continuous availability without any 
interruption of service.  
 
Aging-Detector and Anomaly-Detector will be installed for the detection of software aging or 
some potential anomaly such as protocol errors, log errors, application-level anomalies. When 
software aging or some potential anomaly happens VM-LB will trigger a rejuvenation 
operation. In VM0, other necessary software modules such as SRA-Cood and Data-Collectors 
will be installed. To detect server outages Watchdog module will be applied in VM0. In order 
not to lose any in-flight request or session data at the time of rejuvenation, first, all the new 
requests and sessions are migrated from the active server to standby server. When all the 
ongoing requests are finished in primary server, then the primary VM will be rejuvenated by 
using SRA (Software Rejuvenation Agent).  SRA-Agent that is responsible for the 
rejuvenation operation will be installed in other VMs. 

 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

 
Figure 2. Rejuvenation framework using virtualization 

 
4. System Model Analysis 
 
In this section, we are interested in determining how virtualization technology can enhanced 
the software rejuvenation process and can reduce an application’s downtime and the cost due 
to downtime. We also analyze the availability of system in non-virtualized and virtualized 
scenario. The state transition diagram of non-virtualized system is shown in figure 3. The 
virtualized state transition diagram of our framework is shown in figure 4. The assumptions 
used in the modeling are as follows: 
 Failure rate (λ) and repair rate (μ) of the VM are identical at all states. 
 Unstable rate (λu), the speed of escaping the healthy condition of VM is identical at all 

states. 
 Rejuvenation rate (λr), the frequency of rejuvenation is identical at all states. 
 Mean time spent during the rejuvenation process is constant (1/μr). 
 Mean switchover time, the time needed to transfer from the primary VM to the standby 

VM is constant (1/λs) 
 The probability of going from normal state to failure state is negligible compared to other 

probabilities. 
 During the rejuvenation process, the system can provide the continuous service except non-

virtualized system. 

 
 

Figure 3. Non-virtualized state transition diagram 
First the system is in normal state (1). In failure state (0), no operational server exists and 
service is not available during repair time (1/μ). So it is not necessary to represent the 
switchover state. Under these assumptions and writing down the balance equations of figure 3, 
we get: 

10 PPPRr μλμμ =+     (1) 

uru PP )(1 λλλ ++     (2) 
Rrur PP μλ =      (3) 

0PPu μλ =      (4) 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

After solving the above equations, we get the expressions for the state probabilities of figure 3. 

10 PP
r

u

λλ
λ

μ
λ

+
=     (5) 

1PP
r

u
u λλ

λ
+

=      (6) 

1PP
r

u

r

r
R λλ

λ
μ
λ

+
=     (7) 

 
The conservation equation of figure 2 is obtained by summing the probabilities of all states in 
the system and the sum of the equation is 1. 

101 =++++ PPPPP SRu            (8) 
1

1 )1(1
−

⎥
⎦

⎤
⎢
⎣

⎡
++

+
+=

μ
λ

μ
λ

λλ
λ

r

r

r

uP    (9) 

The non-virtualized system is not available in rejuvenation state (R1) and the failure state (0). 
The system availability in the steady-state is defined as follows: 

Availability A = 1 – )(
10 RPP +         (10) 

The expected total downtime and downtime cost of the application with rejuvenation in an 
interval of L time units are: 

Downtime DT (L) = ( )
10 RPP +  x L  (11) 

          Cost C (L) = [ ] LCPCP rRf ××+× )()(
10   (12) 

Figure 4. State transition diagram of virtualized system 
Now consider the state transition diagram of our virtualized framework. According to the 
proposed framework, first active VM is in normal state (n) and standby VMs are in normal 
state (n-i). After a long mission time, normal states may change to unstable state (Ui) with rate 
i * λu. In the unstable states, VM performance is degraded and software-aging effects render 
the system unreliable.  
 
If a VM is in an unstable state, the state can change to switchover state with rate i * λs and 
rejuvenation state with rate i* λr. If primary VM has encounter the software aging, the standby 
component takes the role of primary VM and continues to operate based on the current state.  
When all the requests are finished in the primary server, then primary VM will be rejuvenated. 
So service is not stopped even during the switchover process and rejuvenation process. In the 
failure state (0), all VMs stop running and no available VM remains.  
 
After the rejuvenation, one of the healthy rejuvenated VM takes over the role of primary VM. 
Our state transition diagram in figure 4 can be described as a Markov process class. We can 
perform steady state analysis of the diagram. The steady-state balance equations of figure 4 are 
as follows: 

11
)( −++=+

+ iRrssiu PPPPi
ii

μμλλμ    
(i=2, 3, ……., n-1)           (13) 

nRrnnn PnPPn μμλ )1(1 −+= −           (14) 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

1201)( Rrssu PPPP μλμμλ ++=+          (15) 

10 uPP λμ =             (16) 

iuur PP
i

λλλ =+ )(     (i=1, 2, 3, ……., n)         (17) 

ii urRr PiP λμ =         (i=1, 2, 3, ……., n)        (18) 

ii uss PiP λλ =         (i=2, 3, ……., n)         (19) 
 
The conservation equation of figure 4 is obtained by summing the probabilities of all states in 
the system and the sum of the equation is 1. 

    1
2110

=+++ ∑∑∑∑
====

n

i
S

n

i
R

n

i
u

n

i
i iii

PPPP                   (20) 

     
⎢
⎢
⎣

⎡

⎪⎩

⎪
⎨
⎧

+
++

+
+

= ∑ ∑
= =

−−
n

i

n

i

in

r

u

r

uin

r

u
n ii

nP
1 1

)(
!
1)(

!
1!

λλ
λ

μ
λ

λλ
λ

λλ
λ

μ
λ  

                   +
+−+ ∑

=

−
n

i

in

r

u

r

u

r

r

i1

)(
)!1(

1
λλ

λ
μ
λ

λλ
λ

μ
λ  

  
1

2

)()(
)!1(

1
−

=

−

⎥
⎥
⎦

⎤

⎭
⎬
⎫

+
+

+−+ ∑ n

r

u
n

i

in

r

u

r

u

s i λλ
λ

μ
λ

λλ
λ

μ
λ

λλ
λ

λ
λ      (21)  

  n
in

r

u
i P

i
nP −

+
= )(

!
!

λλ
λ

μ
λ   (i = 0, 1, …,  n)           (22) 

i
r

u
u PP

i
)(

λλ
λ
+

=    (i = 1, 2, …., n)        (23) 

i
r

u

r

r
R P

i
P

i λλ
λ

μ
λ

+
=  (i = 1, 2, …., n)        (24) 

i
r

u

s
S PiP

i λλ
λ

λ
λ

+
=  (i = 2, 3, …., n)        (25) 

 
The meaning of the probabilities is as follows: 
 

Pi the probability of the VM is in normal state 

Pui the probability of the VM is in unstable state 

PRi the probability of the VM is in rejuvenation state 
PSi the probability of the VM is in switchover state 

P0 the probability of the VM is in failure state 

The virtualized system is not available in the rejuvenation processes in the normal state (1) and 
the failure state (0). The system availability in the steady-state is defined as follows: 

Availability AV  =  1 – )( 10 RPP +   (26) 
Predictable shutdown cost is far less than that of unexpected shutdown (Cf>> Cr). Where Cf is 
the unit cost of unexpected shutdown of a server, and Cr is the unit cost of rejuvenation 
process. The expected total downtime and downtime cost of our framework in an interval of L 
time units are as follows: 

          DownTime DTV (L) = )( 10 RPP + x L     (27) 
          Cost CV (L) = ( 0P x Cf + 

1RP x Cr) x L      (28) 
  4.1. Experimental Results 
 
To acquire system dependability measures like availability and downtime cost, we perform 
experiments using the following failure profile [8] as shown in table 1.  



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

Table 1. System operating parameters 
 

Parameters Values 
n 1, 2, 3, 4 
L 1 year 
λ 1 time/year 
μ 2 times/day 
λr 1 times/month  (λr=0, 1, 2, 3) 
λu 2 times/month 

1/μr 10 min 
1/λS 3 min 
Cr 1 unit 
Cf 100 units 

 
The change in the availability of the non-virtualized and virtualized (3 VMs) system with the 
different rejuvenation rates is plotted in figure 5. In virtualized configuration, we use 3 VMs 
per application server; one VM to run a software load balancer, one VM where we run the 
main application server and a third VM that works as a hot standby. According to the result, 
system availability can increase by using software rejuvenation and virtualization technology. 

 

0.997400
0.997900
0.998400
0.998900
0.999400
0.999900
1.000400
1.000900

0 1 2 3
Rejuvenation rate (per month)

A
va

ila
bi

lit
y

non-virtualized virtualized (3 VMs)  
Figure 5. The plot of availability versus rejuvenation rate (with and without virtualization) 

 
The change in the availability of virtualized system with different number of VMs and 
different rejuvenation rates is plotted in figure 6. As unstable states are removed frequently 
with high rejuvenation rates, the availability of the virtualized system is increased. However, 
as the degree of standby VMs is larger than or equal to 4, the improvement of availability is 
not significant. From this result, it is apparent that 3 VMs configuration is a cost-effective way 
and easy to manage to build high availability systems. The change in the downtime of the non-
virtualized and virtualized (3 VMs) system with the different rejuvenation rates is plotted in 
figure 7. The change in the downtime of virtualized system with different number of VMs and 
different rejuvenation rates is plotted in figure 8. 
 

0.999900

0.999920

0.999940

0.999960

0.999980

1.000000

0 1 2 3
Rejuvenation rate (per month)

A
va

ila
bi

lit
y

3 VMs 4 VMs 5 VMs  
Figure 6. The plot of availability versus rejuvenation rate (virtualized) 

 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

The downtime cost of scheduled shutdown is much lower than that of an unscheduled 
shutdown. The downtime cost due to downtime with the different rejuvenation rates for non-
virtualized and virtualized system is plotted in figure 9 and figure 10.  
 
From this result, it is apparent that our rejuvenation framework is a cost-effective way to build 
high availability system and virtualization technology can improve the software rejuvenation 
process.  

 

0
2
4
6
8

10
12
14

0 1 2 3
Rejuvenation rate (per month)

D
ow

nt
im

e 
(p

er
 h

r)

non-virtualized virtualized (3 VMs)
 

 
Figure 7. The plot of downtime versus rejuvenation rate (non-virtualized and virtualized) 

 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 1 2 3
Rejuvenatin rate (per month)

D
ow

nt
im

e 
(p

er
 h

r)

3 VMs 4 VMs 5 VMs
 

 
Figure 8. The plot of downtime versus rejuvenation rate (virtualized) 

 
 

0.00

0.50

1.00

1.50

2.00

0 1 2 3
Rejuvenation rate (per month)

D
ow

nt
im

e 
C

os
t (

$)

non-virtualized virtualized (3 VMs)
 

 
Figure 9. The plot of downtime cost versus rejuvenation rate (non-virtualized and virtualized) 

 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 1 2 3
Rejuvenation rate (per month)

D
ow

nt
im

e 
C

os
t (

$)

3 VMs 4 VMs 5 VMs
 

 
Figure 10. The plot of downtime cost versus rejuvenation rate (virtualized) 

 
According to the results of figure 9 and 10, we can achieve a zero downtime even in case of 
VM restart. Software rejuvenation using virtualization provides a way to remove faults and 
vulnerabilities at run-time without affecting system availability. Virtualization can be used to 
prolong the availability of the service as much as possible while at the same time ensuring that 
the service is fail-safe. By using our proposed framework, the system does not require any 
additional hardware and can provide the less disruptive as possible for the running service and 
get a zero downtime for most of the case.  
 
 
5. Conclusion 
 
In this paper, we have presented for effective software rejuvenation using virtualization 
technology that has proved to be highly effective to counteract the software aging problem. We 
present a Markov model for analyzing software rejuvenation in such continuously running 
applications and express availability, downtime and costs in terms of the parameters in the 
models. Our results show that virtualization and software rejuvenation can be used to prolong 
the availability of the services. Our framework can be applied to single-server or cluster 
configurations without any additional cost. We conclude that virtualization can be helpful for 
software rejuvenation and fail-over in the occurrence of application failures and software 
aging. 
 
References 
 
[1] A. Avritzer and E. J. Weyuker, “Monitoring smoothly degrading systems for increased 

dependability,” Empirical Software Engineering, vol. 2, no. 1, pp. 59–77, 1997. 

[2] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer, I. Pratt, and 
A. Warfield, “Xen and the Art of Virtualization,” In Proc. 19th ACM Symposium on Operating 
Systems Principles (SOSP-2003), pages 164-177, October 2003. 

[3] K. J. Cassidy, K. C. Gross, and A. Malekpour, “Advanced Pattern Recognition for Detection of 
Complex Software Aging in Online Transaction Processing Servers,” in Proc. International 
Conference on Dependable Systems and Networks, 2002, pp. 478–482. 

[4] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan, and W. 
P. Zeggert, “Proactive Management of Software Aging,” IBM Journal of Research and 
Development, vol. 45, no. 2, pp. 311–332, 2001. 

[5] S. Garg, A. van Moorsel, K. Vaidynathan and K. S. Trivedi, “A Methodology for Detection and 
Estimation of Software Aging,” Proc. Ninth Int. Symp. On Software Reliability Engineering, 
Paderborn, Germany, November 1998 

[6] J. Gray and D. P. Siewiorek, “High-Availability Computer Systems,” IEEE Computer, vol. 24, no. 
9, pp. 39–48, 1991. 



The Annals of “Dunarea de Jos” University of Galati  
Fascicle I – 2007. Economics and Applied Informatics. Years XIII - ISSN 1584-0409 

 
 

[7] M. Grottke, Lei Li, K. Vaidyanathan and K. S. Trivedi, “ Analysis of Software Aging in a Web 
Server’” IEEE Transactions on Reliability, Vol. 5, No. 3, September 2006. 

[8] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software Rejuvenation: Analysis, Module 
and Application,” In Proc. Of FTCS-25, Pasadena, CA, Jun 1995. 

[9] H. V. Ramasamy and M. Schunter, “Architecting Dependable Systems Using Virtualization,” 
Online Available: www.opentc.net/publications/OTC_Architecting_Dependable_Systems.pdf 

[10] “Software Rejuvenation,” Department of Electrical and Computer Engineering, Duke University 
Online Available: http://www.softwarerejuvenation. com/ 

[11] M. Sullivan and R. Chillarege, “Software Defects and their Impact on System Availability—a 
Study of Field Failures in Operating Systems,” in Proc. Twenty-First International Symposium on 
Fault-Tolerant Computing, 1991, pp. 2–9. 

[12] A. T. Tai, L. Alkalaj, and S. N. Chau, “On-Board Preventive Maintenance: A Design-Oriented 
Analytic Study for Long-life Applications,” Performance Evaluation, vol. 35, no. 3–4, pp. 215–
232, 1999. 

[13] K.s. Trivedi, K. Vaidyanathan and K.Goseva-Popstojanova, “Modeling and Analysis of Software 
Aging and Rejuvenation,” Proc. Of 33rd Annual Simulation symp., Grece, Apr 2000. 

[14] K. Vaidyanathan and K. S. Trivedi, “A Measurement-Based Model for Estimation of Software 
Aging in Operational Software Systems.” Proc. Tenth IEEE Intl. Sym. On Softwae Reliability 
Engineering, pp.88-93, Boca Raton, FL, November 1999. 

[15] Virtual Machines: Online Available: http://www.vmware.com 
 

Acknowledgements 

This research was supported by the Korea Research Foundation Grant funded by the Korean 
Government (MOEHRD) (KRF-2007-210-D00006). 
 


